Center for Advanced BioEnergy Research, University of Illinois at Urbana-Champaign

Thursday, July 7, 2011

Salt-loving microbe provides new enzymes for the production of next-gen biofuels

EurekaAlert.com
Public release date: 30-Jun-2011

In order to realize the full potential of advanced biofuels that are derived from non-food sources of lignocellulosic biomass—e.g., agricultural, forestry, and municipal waste, and crops such as poplar, switchgrass and miscanthus—new technologies that can efficiently and cost-effectively break down this biomass into simple sugars are required. Existing biomass pretreatment technologies are typically derived from the pulp and paper industry and rely on dilute acids and bases to break down the biomass. The treated biomass product is then exposed to biological catalysts, or enzymes, to liberate the sugars.

A new class of solvents, referred to as ionic liquids, have been reported to be much more efficient in treating the biomass and enhancing the yield of sugars liberated from it. While ionic liquids are useful for breaking down biomass, they can also hinder the ability of the cellulases (usually derived from fungi) used to produce sugars after pretreatment. Ionic liquids are a liquid form of salt that will inactivate enzymes by interfering with the folding of polypeptides—the building-blocks of proteins. To help identify new enzymes that are tolerant of ionic liquids, researchers from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) and the Joint BioEnergy Institute (JBEI) at DOE's Lawrence Berkeley National Laboratory are turning to those found in the complete genome sequences of halophilic (salt-tolerant) organisms.

Read more